Utilizing THMC and MUSt Software for Remediation and Management of Contaminants with PRB

Student: Thi-Tuyet-Han Nguyen Advisor: Prof. Jui-Sheng Chen Date: 2025/04/11

Outline

Introduction

Results and Discussion

INTRODUCTION

A risk management study was conducted at a chlorinated solvent chemical spill site in southern Taiwan.

Schematic diagram of the studied site (Tsai et al., 2012)

The calculated risk levels exceeded the target cancer risk of 10⁻⁶ set by Taiwan's Soil and Groundwater Remediation Act

Health risk assessment point

Assessment point	The status of land use	The distance from the contaminated site (m)	Cancer risk benchmark (personal)
Inside the	T 1 . • 1		
contaminated area	Industrial area	0	
(point A)			<u>>10⁻⁶</u>
Outside the			>10
contaminated area	Residential area	68	
(point B)			

Environmental Protection Administration, Taiwan R.O.C (Taiwan EPA)

Appropriate remedial actions are required to lower the risk to below the target level.

INTRODUCTION

Chlorinated solvent

Chlorinated solvents (PCE, TCE, DCE, etc.) are widespread groundwater contaminants often released as dense nonaqueous phase liquids (DNAPLs).

The biodegradation pathway of the chlorinated solvent

These compounds, widely used in industrial processes and dry cleaning, pose several remediation challenges:

Toxicity and Health Risks:

Chlorinated solvents are known carcinogens and can adversely impact human health, even at low concentrations.

Migration and Plume Complexity:

Chlorinated solvents move downward and laterally in groundwater, forming dense, hard-to-predict and remediate plumes

Environmental Persistence:

Under some site conditions, these chemicals resist natural degradation, allowing them to remain in the environment for decades.

INTRODUCTION

Permeable Reactive Barrier (PRB)

Permeable Reactive Barrier (PRB) is an in situ technology used to treat groundwater contaminants.

Permeable Reactive Barrier (PRB)

Reactive materials

Zero-valent iron (ZVI) Activated alumina Activated carbon Pea gravel, limestone, sawdust

The primary removal methods

- (1) Chemical reaction
- (2) Sorption and precipitation
- (3) Reactions involving biological

mechanisms

Advantages

- No ground space
- Low operation cost
- Longevity (30 years)
- Energy-saving

Objective

Utilizing THMC and MUSt software for remediation and management of contaminants with PRB

+ Design and implement a PRB using the THMC model, and assess its performance by integrating flow simulations and reactive transport.

+ Health risk assessment with MUSt software

+ Evaluate whether PRB is applicable in this area.

Conceptual model

Hydrological parameters and boundary conditions

	Aquifer	PRB
II	91(, 1)	21((m/dex))
Hydraulic conductivity (K)	81 (m/day)	216 (m/day)
Porosity	0.3	0.6
Boundary conditions		
	No flow: left, right Constant-head (Dirichlet)	Upgradient: background ground water concentrations

Upstream and Downstream

Reaction
$\mathrm{Fe}^{0} + \mathrm{H}_{2}\mathrm{O} + 0.5\mathrm{O}_{2} \rightarrow \mathrm{Fe}^{2+} + 2\mathrm{OH}^{-}$
$Fe^0 + 2H_2O \rightarrow Fe^{2+} + H_2 + 2OH^2$
$4Fe^{0} + 7H_{2}O + NO_{3}^{-} \rightarrow 4Fe^{2+} + 10OH^{-} + NH_{4}^{+}$
$Fe^{0} + 1/3 TCE + H^{+} \rightarrow Fe^{2+} + 1/3 ETH + 1/2 Cl^{-}$
$SO_4^{2-} + 4H_2 \rightarrow HS^- + OH^- + 3H_2O$
$\text{HCO}_3^- \leftrightarrow \text{H}^+ + \text{CO}_3^{-2-}$
$H_2O \leftrightarrow H^+ + OH^-$

7

Governing equation

Groundwater flow model

The steady-state flow through the aquifer and PRB

$$\nabla \cdot \left[K \cdot (\nabla h + \frac{p}{p_0} \nabla z) \right] = 0$$

K: hydraulic conductivity (L/T) *h*: pressure head (L), z: potential head (L) *p*: fluid density with dissolved biogeochemical concentrations (M/L³) p_0 : referenced fluid density at zero biogeochemical concentration (M/L³) **Reactive transport model**

 C_i : concentration of the ith species (M/L³) V_f : fluid velocity (L/T) r_i : production rate of species i per unit volume from all reactions (M/L³)/T) θ : effective porosity J_i : surface flux due to dispersion and diffusion [(M/T)/L²]

Health risk assessment

TCE concentration from the THMC model will be applied to the MUSt model

The lifetime average daily dose (USEPA 2004):

 $ADD = C_{w} \times \left[\frac{IR \times EF \times ED}{BW \times AT \times 365 day/year}\right]$

Lifetime cancer-causing carcinogenic risk indexes for the direct oral ingestion exposure case were calculated (USEPA 2004):

 $TR_{carinogenic} = ADD \times SF$

 $TR < 10^{-6}$: Low risk $10^{-4} < TR$: High risk $10^{-6} \le TR \le 10^{-4}$: Medium risk

C_w : estimated long-term contaminant	<i>ED</i> : exposure duration (years)
concentration (mg/L)	<i>BW</i> : body weight (kg)
<i>IR</i> : water ingestion rate (L/day)	AT: average lifetime (years)
<i>EF</i> : exposure frequency (day/year)	SF: slope factor (1/mg/kg-day)

Set up value in MUSt software

🎄 Must											
File	Help	At	oout	Rur	n Res	et					
Constitue	nts	9								Exposure Calculatio	'n
Geomet	iry	Expo	DSUR Inclu	e Calc de Risk	ulation Assess	nent					
fx			Ex	posure	Paramet	er				1	
Sourc	e						Variable	-	Value	Unit	
			► 1	ngestio	n Rate		IR		2.0	L/Day	
• ¥			E	Exposu	e Freque	ncy	EF		250.0	Daylyr	
Transp Proper	ort ties		E	Exposu	e Duratio	n	ED		25.0	yr	
0			E	Body W	eight		BW		70.0	Kg	
Exposu Calculat	ire ion		1	Averagir	ng Time		AT		29200.0	Day	
X			Т	oxicolo	gical data	I					
Outpu	ut										
				Slo	pe Facto	r					
			Г		Slone Ea	ctor 🔺	Variable		Value	Unit	
				•	TCE		SF_TCE		0.046	 1/mg/kg-day	

SF is from USEPA Integrated Risk Information System (IRIS)

RESULTS & DISCUSSIONS Remediation efficiency of PRB with THMC model

PRB systems can significantly reduce TCE by treating groundwater in situ as it flows through reactive materials, providing a long-term, passive remediation solution

• The concentration of TCE decreases as the groundwater passes through the barrier.

• The degradation process transforms harmful TCE into non-toxic ETH, reducing contaminant levels in the aquifer

$$Fe^{0}(s) + \frac{1}{3}TCE + H^{+} \rightarrow Fe^{+2}\frac{1}{3}ETH + \frac{1}{2}Cl^{-}$$

TCE concentration results at the PRB and non-PRB by the THMC model

Health risk assessment with MUSt software

PRB help decrease area health hazards to minor levels

RESULTS &

DISCUSSIONS

Health risk assessment results by MUSt model between PRB and non-PRB for 30 years

- THMC modeling evaluates PRB performance by simulating flow and chemical reactions, showing significant TCE reduction as groundwater passes through ZVI.

- The MUSt health risk evaluation indicates that PRBs may reduce health risks to low levels.

PRB is an effective remediation method that can be applied to this site

- THMC and MUSt models help to monitor PRB performance over time, providing practical methods for managing contaminants and optimizing PRB operation.

Porosity reduction ranges from 0.0007 to 0.03 per year and depends on in situ geochemistry and flow conditions (Li et al., 2006).

- Continue to collect concentrations of species in groundwater in this site to run models to evaluate porosity reduction and evaluate influencing factors

Contaminant plume	PRB Reactive materials (Zero-valent iron(ZVI)) Fe ⁰	
Entrance face	↓ pH is elevated ↓	Reorientation of flow paths, changes in residence time, and bypassing.
Groundwater flow 	Precipitation of secondary minerals Porosity reductions	Treated water

Reaction ^(a)	Mineral formed ^(a)
$CaCO_3 \leftrightarrow Ca^{2+} + CO_3{}^{2-}$	Calcite/Aragonite
$CaMg(CO_3)_2 \leftrightarrow Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$	Ca-Mg-carbonate
$MgCO_3 \leftrightarrow Mg^{2+} + CO_3^{2-}$	Magnesite
$Mg(OH)_2 \leftrightarrow Mg^{2+} + 2OH^{-}$	Brucite
$MnCO_3 \leftrightarrow Mn^{2+} + CO_3^{2-}$	Rhodochrosite
$Mn(OH)_2 \leftrightarrow Mn^{2+} + 2OH^-$	Pyrochroite
$FeCO_3 \leftrightarrow Fe^{2+} + CO_3^{2-}$	Siderite
$Fe(OH)_2 \leftrightarrow Fe^{2+} + 2OH^-$	Ferrous Hydroxide
$FeS+H_2O \leftrightarrow Fe^{2+} + HS^- + OH^-$	Ferrous Sulfide

a. Li et al. (2006)

- Calibrate the model after PRB is completed on the site

Thank you for your listening