Computers & Geosciences 31 (2005) 35-43

An effective method for 3D geological modeling with multi-source data integration

Qiang Wu, Hua Xu, Xukai Zou

Presenter: Pei-Yun Liao Advisor: Prof. Jia-Jyun Dong Date: 2025/05/23

Outline

Introduction

What data sources do we use to build a 3D geological model?

Existing method	V.S.	Method in this paper	
Borehole Cross-section data		Borehole Cross-section data Property data Seismic reflection data	Geological maps Topographic maps Structural geology maps Satellite image, etc.

Sparse Undersampled

Various Sufficient

Introduction

A stepwise refinement method with multi-source data integration in

the Subsurface Visualization System (SVS).

- A specific 3D geological modeling system to implement this method
- Developed in Visual C++ 6.0 using the OpenGL
- Runs on PC platforms

Can increase the accuracy of 3D modeling

Method

1	Integration of 2D/2.5D data
2	Supplement of cross-sections
3	Simulation of faults
4	Definition of a template
5	Construction of horizons
6	Representation of solids

1. Integration of 2D/2.5D data

2. Supplement of cross-sections

CSCAD tool allows users to semi-automatically define a cross-section based on digitized geological data.

^(C) Stratigraphic boundaries generated.

Fig. 2. Defining a cross-section using CSCAD.

^(A) Digitized geological data.

3. Simulation of faults

The fault points are connected by constrained Delaunay triangulation to generate a Triangular Irregular Network (TIN) model.

4. Definition of a template

A template is a <u>data reference format</u> used to guide the construction of horizon models in the 3D geological modeling process.

> Conclusion

5. Construction of horizons

Horizon refers to the modeled surface of a geological layer (strata boundary).

6. Representation of solids

Horizon-to-solid methods:

- 1. Calculating the intersection points between two horizons and horizons and faults.
- 2. Reconstructing the Triangular Irregular Network (TIN) models.
- 3. Establishing a boundary representation solid model by the topological relationship between faults and each horizon surface.

Modeling in Huai Bei, China

Regional geological condition

- Rocks are folded several times
- 136 faults
- Numerous valuable deposits (e.g. anthracite coal)

Available geological data

- Geological maps
- Topographic maps
- Structural geology maps
- 179 borehole data
- 9 cross-sections

Modeling in Huai Bei, China

Steps:

- Integrate the digitized source data to the subsurface visualization system (SVS) modeling format through DCI.
- Construct 29 supplementary cross-sections in the CSCAD environment.
- 3. Simulate 79 faults following the basic properties of faults.

Modeling in Huai Bei, China

Steps:

- Define a template as data reference format.
- Generate each horizons
 from top to bottom.
- Create solid models of stratigraphy from horizon models.

Application

Conclusion

Modeling in Huai Bei, China

A 3D section.

Fence diagrams created from solids.

Conclusion

- The stepwise refinement method with multi-source data integration significantly improves 3D geological modeling.
- Strata boundaries can be precisely controlled through multi-source data integration, which enhances the overall accuracy of the 3D model.

Thank you for your attention