

Geothermal Power Estimation with a Single Fracture Circle Model in Enhanced Geothermal Systems

Cheng-Wen Chu Professor : Dr. Yi-Chia Lu

2025/04/18

Outline

Geothermal Potential in Taiwan

Introduction

- The National Energy Program (NEP) calculated Taiwan's deep geothermal potential to be 33.6 GWe in 2012.
- In 2013, a study by Li,Ching-Jui from ITRI estimated the deep geothermal potential of Taiwan's top nine geothermal areas at 31.8 GWe.
- Chen, Chi-Hsuan from the Central Geological Survey reported in 2023 that the latest calculation of deep geothermal potential is 39.7 GWe.
- Overall, Taiwan's deep geothermal potential is estimated to be around 30 to 40 GWe.

Total : ~ 40 GWe in 10 potential areas

No.		1	11	111	IV	V	VI	VII	VIII	IX	Х
Name		Tatun	Chinsuei- Tuchang	Lushan	Reisuei	Wulu- Yenping	Chiben -Jinlun	Baolai	Guanzilin	Miaoli	Dongpu
Volume	km ³	809	2774	1096	1237	1900	2011	1412	1254	431	780
Average T	°C	235	227	236	219	225	215	212	215	217	219
Heat content	10 ¹⁸ J	245.2	795.0	332.0	334.7	530.8	531.1	360.2	324.3	113.6	209.2
Power available	GWe	2.7	8.5	3.7	3.5	5.6	5.4	3.6	3.3	1.2	2.2

How to product deep geothermal energy Introduction

- Key points for developing geothermal power plant : Heat source, Reservoir(fracture), Liquid
- Deep Geothermal : Only need Heat source
- EGS : Create Fracture and inject liquid
- AGS : Closed wellbore
- ≻ How Deep?
- 3000m
- Next-Generation

增強型地熱系統 進階型地熱系統 EGS(Enhanced Geothermal Systems) AGS(Advanced Geothermal Systems)

EGS

Introduction

- Low permeability
- Low porosity
- High Geothermal Gradient

Usually EGS

Introduction

 Injection well
 Injection water
 Hydro fracture
 Production well
 Stable injectionproduction system

Idea of deep hot dry rocks heat mining was described Konstantin Tsiolkovsky , 1898 ; Charles Parsons , 1904 ; Vladimir Obruchev , 1920

Injection Well

An injection well is drilled into hot basement rock that has limited permeability and fluid content. All of this activity occurs considerably below water tables, and at depths greater than 5000 feet. This particular type of geothermal reservoir represents an enormous potential energy resource!

Injecting Water

Water is injected at sufficient pressure to ensure fracturing, or open existing fractures within the developing reservoir and hot basement rock.

? Hydro-fracture

Pumping of water is continued to extend fractures and reopen old fractures some distance from the injection wellbore and throughout the developing reservoir and hot basement rock. This is a crucial step in the EGS process.

A production well is drilled with the intent to intersect the stimulated fracture system created in the previous step, and circulate water to extract the heat from the hot basement rock with improved permeability.

Additional production wells are drilled to extract heat from large volumes of hot basement rock to meet power generation requirements. Now a previously unused but large energy resource is available for clean, geothermal power generation.

Single Fracture Circle System

- The single fracture cycle is a simplified model of a complex hot dry rock extraction system. It is represented as a single, elliptical, lead-shaped fracture, with the injection well, fracture zone, and production well forming a complete thermal energy extraction loop (Tester and Smith, 1977).
- ➤ In this model, cold water is injected into the elliptical fracture, where it exchanges heat with the surrounding hot rock. The heated water is then recovered through the production well.

Lin,2014

Heat transfer from rock to water

- The mechanism by which rocks transfer heat to water is typically simplified as a process of heat transfer from a constant-temperature, hightemperature reservoir to a constant-temperature, low-temperature reservoir.
- ➤ The rate of heat conduction is proportional to the contact area between materials and their thermal conductivity coefficient. This approach assumes that water circulates continuously and acts as a constanttemperature heat reservoir. Additionally, the hot dry rock far from the wellbore is assumed to behave as a constant-temperature, hightemperature heat source. Heat transfer occurs due to the temperature difference between these two reservoirs.
- \succ As the low-temperature water continuously extracts heat from the formation, the depth of the thermal conduction zone increases over time.

Methodology

高温鼓效

 $\alpha = k / \rho c$ α = thermal diffusivity (m²/s) K=Thermal conductivity (W/m.K) ρ =rock density (kg/m³) c=specific heat of rock (J/kg.K)

2. Penetration depth

 $\delta=2\sqrt{\alpha t}$

δ=penetration depth (m) α =thermal diffusivity (m²/s) t=time(s) 3. Minable volume

 $V = 2 \ \delta A$ V=Minable volume (m³) δ =penetration depth(m) A=Creation fracture Area (m²)

4. Output power

 $P = V\rho c(Ti - Tf)/t$ P = Output power(W) $V=Minable volume (m^3)$ $\rho=rock density(kg/m^3)$ c=specific heat of rock(J/kg.K) Ti=Initial temperature of thermal reservoir (°C) Tf=Final temperature of thermal reservoir (°C)

EGS Design

Methodology

- In EGS projects, a single large fracture is unlikely to form. Instead, multiple small, parallel fractures are used for heat exchange.
- The spacing between two fractures is typically twice the penetration depth. Based on the desired thermal output, the total fracture volume can be estimated, from which the required surface area is calculated. This area, divided by the penetration depth, gives the number of fractures needed.

Han,2019

Binary Generator efficiency

Most EGS test sites use binary generator sets (ORC systems), which operate similarly to air conditioners—using a **low-boiling-point working fluid** to convert heat into electricity. According to Zarrouk (2014), their efficiency depends strongly on the geothermal fluid temperature

η=6.9681ln(Tin)-29.713

h=Power generation efficiency (%) Zarrouk,2014 Tin=the temperature of the geothermal fluid at the inlet (°C)

Work Flow

	• Initial temperature(°C)
	• Final temperature(°C)
	Number of production and injection wells
Set	• Power plant capacity(MW)
Conditions	• efficiency(%)
	 Thermal conductivity(W/m.K)
	 Thermal diffusivity(m²/s)
Collect	 Rock density(kg/m³)
parameters	Two well intervals
	Required fracture area(m ²)
	• Single fracture area(m ²)
	Number of fracture required
Calculate	Thermal wave penetration depth(m)
	The required length of each well
	• Fracture intervale
Desults	
Results	• EGS design

Parameter

Results and Discussions

As an assumption for the following estimates, a 5 MW EGS geothermal power plant is considered to be built in the slate belt of the Lanyang Plain, with an expected operational lifespan of 20 years.

Thermal	Specific heat of	Rock	Thermal	Table 3 T Sumple	Thermal paran Thermal conductivit	neters of e A y -1	examined slates measurements of conductivity	Effusivity e/W×s ^{0.5} n	n ⁻² K ⁻¹	Anisotropy coef- ficient\of effusivity	Diffusivity $a/1 \times 10^{-7}$	m ² s ⁻¹	Anisotropy coeffi- cient of diffusivity
conductivity(W/m.	rock(J/kg K)	density(kg/m ³)	diffusivity(m ² /s)	MOK1 MOK2	k _{II} k 3.65 1 3.92 1	.61 2 .52 2	2.3 2.6	e _{II} 2814.6 2877.5	e⊥ 1798.3 1724.83	e _{IL} e⊥ 1.6 1.7	a _{II} 16.8 18.6	α _⊥ 8.0 7.8	a _{II} a⊥ 2.1 2.4
K)				ZAL3 LHO4	3.42 1 3.70 1	.43 2 .79 2 .52 2	2.4 2.1	2660.4 2780.6	1674.3 1866.8	1.6 1.5	16.5 17.7	7.3 9.2	2.3 1.9
2.784	1,053	2,800	9.44E-7	CER6 CLD7 VOD8	3.58 1 3.72 1 3.49 1	.65 2 .71 2 .51 2	2.2 2.2 2.3	2782.4 2775.6 2669.5	1762.8 1897.2 1726.4	1.6 1.5 1.6	16.6 17.9 17.1	8.7 8.1 7.6	1.9 2.2 2.2
Power plant	Thermoelectric	Initial	Final	VEG1 TRG1 CSTR1 KUN2	2.86 2 2.69 2 3.02 1 3.40 3	.65 1 .40 1 .99 1	l.1 l.1 l.5	2396.1 2319.8 2473.7 2650.9	2295.3 2176.1 1968.9 2535.1	1.0 1.1 1.3	14.2 13.4 14.9	1.3 1.2 1.0	1.1 1.1 1.5
capacity(MW)	conversion	temperature(°C)	temperature(°C)		5.40 5			2000.7	4.1.1.1.1.1		10.4	1.2	
	efficiency(%)				Гhe	rm	nal co	nd	uct	ivity a	anc	1	
5	6	250	200	t	her	ma	al diff	usi	vity	/ of s	late))	
Number of	Number of	Operation	Two well intervals] (Ma	łgo	orzata	a L	abi	us et	al.,	20)19)
production wells	injection wells	time(year)	in the										
			reservoir(m)										
2	1	20	200										

Requirements for a 5 MW EGS Plant in the Lanyang Plain (20-year Operation):

Required fracture area(m ²)	Required heat reservoir volume(m ³)	Thermal wave penetration depth(m)	Number of fracture required				
3,660,000	3.6E8	48.81	30				
Number of fracture intervals	fracture intervals (m)	Single fracture area(m ²)	The required length of each well in the reservoir(m)				
29	97.62	125,600	2,830.98				

Result

Results and Discussions

2830.98m,30 fractures

Conclusions

- ➢ Based on the assumptions in this study, a 5 MW EGS plant would require approximately 3.66 million m² of surface area, equivalent to 0.98 km³ of hot dry rock.
- Assuming a 200 m distance between the production and reinjection wells, and a oneinjection-two-production configuration, a bottom well length of 2,831 m is needed. About 30 fractures are assumed to connect the injection and production wells.
- If the water circulation effectively transports heat to the surface, an EGS system can be established under these conditions.
 For example, if the reservoir rock starts at 250 °C and the temperature drops by only 20% over 20 years of operation, a volume of ~1 km³ would be sufficient to support a 5 MW plant.
- ➢ It should be noted that many parameters used here are hypothetical. In future assessments, real field data can be used with simulation tools to calculate flow rates and water volumes for more accurate evaluations.

Future Work

- Other EGS designs
- ➢ Numerical modeling
- Financial Model

Thanks for your attention